lopscience = [lopscienceioporg

Home Search Collections Journals About Contactus My IOPscience

Leibniz algebroid associated with a Nambu-Poisson structure

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 8129
(http://iopscience.iop.org/0305-4470/32/46/310)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.111
The article was downloaded on 02/06/2010 at 07:50

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/46
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. GerB2(1999) 8129-8144. Printed in the UK PIl: S0305-4470(99)05532-8

Leibniz algebroid associated with a Nambu—Poisson structure

R Ibafezt, M de LénZ, J C Marrero8 and E Pamh§

T Departamento de Mateticas, Facultad de Ciencias, Universidad del Pais Vasco,
Apartado 644, 48080 Bilbao, Spain

¥ Instituto de Materaticas y Fsica Fundamental, Consejo Superior de Investigaciones
Cienfficas, Serrano 123, 28006 Madrid, Spain

§ Departamento de Mateatica Fundamental, Facultad de Ma#gioas, Universidad de La
Laguna, La Laguna, Tenerife, Canary Islands, Spain

E-mail: mtpibtor@lg.ehu.es, mdeleon@fresno.csic.es, jcmarrer@ull.es and
mepadron@ull.es

Received 29 June 1999

Abstract. The notion of a Leibniz algebroid is introduced, and it is shown that each Nambu—
Poisson manifold has associated a canonical Leibniz algebroid. This fact permits one to define the
modular class of a Nambu—Poisson manifold as an appropriate cohomology class, extending the
well known modular class of Poisson manifolds.

1. Introduction

A Lie algebroid is a natural generalization of the notion of Lie algebra, and also of the tangent
bundle of a manifold. There are many other interesting examples, for instance, the cotangent
bundle of any Poisson manifold possesses a natural Lie algebroid structure. Roughly speaking,
a Lie algebroid over a manifol8¥ is a vector bundl& over M such that its space of sections
I'(E) has a structure of Lie algebra plus a mapping (the anchor map)&ronto 7 M which
provides a Lie algebra homomorphism framgE) into the Lie algebra of vector fields(M).

The action ofl"(E) on C*(M, R) defines the Lie algebroid cohomology &f. For a
Poisson manifoldZ, the associated Lie algebroid is just the triglesM, [ , 1’, #), where
[, I is the bracket of 1-forms and # is the mapping from 1-forms into tangent vectors defined
by the Poisson tensor. For an oriented Poisson manifblahd its associated Lie algebroid,
Weinstein [29, 30] has defined the so-called modular clagd ofvhich is an element of the
corresponding Lie algebroid cohomology (in fact, an element of the Lichnerowicz—Poisson
cohomology spacél},(M)). The modular clas¥, is defined as the operator which assigns
to each functiory the divergence with respect toof its Hamiltonian vector field( ;, where
v is a volume form onV. A direct computation shows that the modular class of a symplectic
manifold is null. Indeed, the vanishing of the modular class of a Poisson manifold is closely
related with its regularity. Moreover, itwas proved by Xu [31] (see also [4, 9]) that the canonical
homology is dual to the Lichnerowicz—Poisson cohomology for unimodular Poisson structures,
that is, for Poisson structures with null modular class. Also, it should be remarked that the
modular class was the tool recently used by Dufour and Haraki [8] and by Liu and Xu [16] to
classify quadratic Poisson structures.
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Our interest is to extend the above results for Nambu—Poisson manifolds. The concept
of a Nambu—Poisson structure was introduced by Takhtajan [25] in order to find an axiomatic
formalism for then-bracket operation

{f1,.... fad = det<%>
ij

proposed by Nambu [24] to generalize Hamiltonian mechanics (see also [2,5,6,10]). A
Nambu-Poisson manifold is a manifodd endowed with a skew-symmetricbracket of
functions{, ..., } satisfying the Leibniz rule and the fundamental identity

n

U o den o galb =D e U frrs &id oo 8a)
i=1

forall f1,..., fu_1,81,---, & € C®(M,R). The local and global structure of a Nambu—
Poisson manifold were elucidated in recent papers [1,11, 14, 22,23]. Indeed, a Nambu—
Poisson manifold of order greater than two consists of pieces which are volume manifolds, in
the same way that a Poisson manifold is made of symplectic pieces. Recently, an interesting
recursive characterization of Nambu—Poisson structures was obtained in [12].

In this paper we introduce the notion of a Leibniz algebroid—a natural generalization of
a Lie algebroid. The notion of Leibniz algebra was recently introduced by Loday [17, 18] (see
also [19]) as a non-commutative version of Lie algebras. Indeed, a Leibniz algebra is a real
vector spacg endowed with &-bilinear mapping , } satisfying the Leibniz identity

{ai, {az, as}} — {{ay, a2}, as} — {az, {a1,a3}} =0

for all a1, az, az € g. If the bracket is skew-symmetric we recover the notion of Lie algebra.
Next, the notion of a Leibniz algebroid can be introduced in the same way as that for the case of
Lie algebroids. One of the main results of the present paper is to associate a Leibniz algebroid
to each Nambu—Poisson manifald. The Leibniz algebroid attached 8 is just the triple
N"HT*M), [, 1.#), where [, ]: Q" 1(M) x Q""1(M) — Q""1(M) is the bracket of

(n — 1)-forms defined by

[o. B] = LiwaB + (=) (i (o) M) B

fora, p € Q"1(M), and # :/\"‘1(T*M) — T M is the homomorphism of vector bundles
given by #8) = i(B)A. HereA is the Nambu—Poissonvector. In addition, it is proved that
the only non-null Nambu—Poisson structures of order greater than two on an oriented manifold
M of dimensionm, with m > 3, such that its Leibniz algebroid is a Lie algebroid are those
defined by non-nullz-vectors.

As in the case of Poisson manifolds, we define the modular class of an oriented Nambu—
Poissomm-dimensional manifold/ of ordern. Indeed, ifv is a volume form onVf then the

mapping

M, C¥(M,R) x ...t x C®(M,R) — C®(M,R)
given by
v=M,(f1,..., fu-DV

is an(n — 1)-vector onM, whereX s , = #(dfi A ... Adf,_1) is the Hamiltonian vector
field associated with the functiong, ..., f,_1. Next, the mapping

'C’Xflu

Jn—-1

My QY M) — C®(M, R) o ()M,
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defines a 1-cocycle in the Leibniz cohomology complex associated with the Leibniz algebroid
(N"HT*M), [, 1.#). The cohomology class\ft,] € HX(Q"1(M); C>(M, R)) does not
depend on the chosen volume form and it is called the modular clak dAs in the case

of Poisson manifolds it is proved that the modular class of a volume manifold is null. In a
forthcoming paper we will investigate the role played for the modular class in the problem of
classification of Nambu—Poisson manifolds. We are also investigating the existence of a dual
homology to the Leibniz algebroid cohomology, which would be related with the vanishing of
the modular class (see [4, 9, 31] for the case of Lie algebroids and Poisson manifolds).

2. Preliminaries

All the manifolds considered in this paper are assumed to be connected.

2.1. Nambu—Poisson structures

Let M be a differentiable manifold of dimensien Denote byX (M) the Lie algebra of vector
fields onM, by C>(M, R) the algebra o> real-valued functions o and byQ* (M) the
space ok-forms onM.

An almost-Poisson brackef ordern (n < m) on M (see [14]) is am-linear mapping
{,....}] : C®(M,R) x ... .. x C®M,R) — C>®(M,R) satisfying the following
properties:

(1) Skew-symmetry:
(1o fd = CED oy o fom) (2.1)

forall f1,..., f, € C*(M, R) ando € Symnin), whereSymn(n) is a symmetric group
of n elements and(o) is the parity of the permutation.
(2) Leibniz rule:

{frg1, fo, - Ju} = falgn, for oo s fud + &alfas for - S (2.2)
forall f1,..., fu, g1 € C*(M,R).

If {,...,}isanalmost-Poisson bracket of ordghen we define a skew-symmetric tensor
A of type (n, 0) (n-vector) as follows:

A(df]J 7dﬁ1) == {fla ’fn}

for f1,..., f, € C® (M, R). Conversely, given an-vector onM, the above formula defines
an almost-Poisson bracket of orderThe pair(M, A) is called ageneralized almost-Poisson
manifold of ordem.

If /\”‘1(T*M) is the vector bundle of thén — 1)-forms on M then A induces a
homomorphism of vector bundles

#:N\N"HTM) — TM
by defining

#PB) =i(B)A(x) (2.3)
forg e /\"‘1(TX*M) andx € M, wherei (B) is the contraction by. Denote also by

#:Q" N (M) > X(M)
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the homomorphism of *° (M, R)-modules given by

#H(a)(x) = #(a(x)) (2.4)
foralle € Q*"1(M) andx € M. Then, if f1, ..., f,_1 aren — 1 functions onM, we define
a vector field

Xpyfoo =#AfiA...Adf1) (2.5)

which is called thédamiltonian vector fieldassociated with the Hamiltonian functiofis . . .,
fu_1. From (2.5) it follows that

X s (fn) = {10 s a1, fa)- (2.6)

Arricher structure, related with interesting dynamical problems, can be considered adding
to the almost-Poisson brackgt. .., } the following integrability condition fundamental
identity):

{f17 MR ] fn,l, {glv MR ] gn}} - Z{gls ey {fl’ cec fnflv gi}v cec gf’l} (27)
i=1
forall f1,..., f._1, g1, ..., g, functionsonM. Inthiscase{, ..., }is called a&Nambu—Poisson

bracketand(M, A) is aNambu—Poisson manifold of order(see [25]).
In fact, ann-vector A on M defines a Nambu—Poisson structure if the Hamiltonian
vector fields are derivations of the algelf@®(M,R) x ... ... x C°(M,R),{,...,})
or equivalently, every Hamiltonian vector field,, , , is an infinitesimal automorphism of
A, that is,
Lx, , A=0.

~fn—1

Examples 2.1. (a) ThePoisson manifoldsare just the Nambu—Poisson manifolds of order
two [15, 26, 28].
Another examples of Nambu—Poisson manifolds are the following.

(b) LetN be an oriented:-dimensional manifold and choose a volume farfon N. Given
m functionsfi, ..., f,, on N, we define itsn-bracket by the formula

dfi Ao Adfy = {f1, o, fulon. (2.8)

It is not hard to prove that it is a Nambu—Poisson bracket (see [11]). Denatg, bthe
m-vector associated with this bracket. Note that for the Nambu—Poisson stricture
the homomorphism # Q"~Y(N) — X(N) is an isomorphism. Furthermore, Af is a
Nambu—Poisson structure of orderand A £ 0 at every point then there exists a volume
formv on N such thatA = A,,, (see [14]).

(c) Let Ay be an arbitraryn-vector on an orientegi-dimensional manifoldv with volume
formvy. Then, there exists a functioghe C*(N, R) such thatAy = fA,,. Moreover,
if fi,..., fu—1arem —1functions onV andX_, , is the corresponding Hamiltonian
vector field with respect to the-vectorA y, it follows thatLXfl___fmilAN = 0. Thus, we
deduce thatN, Ay) is a Nambu—Poisson manifold of order

(d) If V is ak-dimensional differentiable manifold, y induces am:-vectorA on the product
N x V and(N x V, A) is a Nambu—Poisson manifold of order

The following theorem describes the local structure of the Nambu—Poisson brackets of
ordern, withn > 3.
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Theorem 2.2.[1, 11, 14, 22, 23] LetM be a differentiable manifold of dimensien Then-
vectorA, n > 3, defines a Nambu—Poisson structureMrif and only if for allx € M where

A(x) # 0, there exist local coordinateg?, ..., x*, x"*%, ..., x™) aroundx such that
0 0
A=—A...A—.
ax?! xn

Remark 2.3. A point x of a Nambu—Poisson manifold/, A) of ordern > 3 is said to be
regular if A(x) #0.

Remark 2.4. Let (M, A) be a Nambu—Poisson manifold of ordemwith n > 3, and consider
thecharacteristic distributionD on M given by

x €M — Dx) =#N"T'M) = ({Xp 5 1)/ f1s -y foo1 € CO(M,R)}) C T M.

Then,D defines a generalized foliation @i whose leaves are either pointsedimensional
manifolds endowed with a Nambu—Poisson structure coming from a volume form (see [14]).

2.2. Leibniz algebras and cohomology

First, we recall the definition of real Leibniz algebra (see [17-19]).
A Leibniz algebra structuren a real vector spaggis aR-bilinearmap{, }:gxg— g
satisfying thd_eibniz identity that is,

{a1, {az, az}} — {{a1, a2}, az} — {az, {a1, as}} =0 (2.9)

for ay, az, a3 € g. In such a case, one says tligt{ , }) is aLeibniz algebra

Moreover, if the skew-symmetric condition is required tlign{ , }) is a Lie algebra. In
this sense, a Leibniz algebra is a non-commutative version of a Lie algebra.

Let(g, {, }) beaLeibniz algebra anti be a real vector space endowed witR-dilinear
map

gx M — M

such that{ay, as}m = ai(aym) — as(aym), for all a;,a, € g andm € M. ThenM is a
g-module relative to the representatiofg on M.

If M is ag-module we can introduce a cohomology complex as follows.

A k-linear mapping* : g x ...* ... x g — M is called aM-valuedk-cochain We
denote byC*(g; M) the real vector space of these cochains.

The operatob* : C¥(g; M) —> C**1(g; M) given by

k
k k ik ~
3“c*(ag, ..., ar) = E (=D'a;c*(ag, ..., a;,...,a;)
—

i—1 k ~
+ Z (=D' ¢ (ao, ces @iy aj_g {ag, aj), aje, - ak) (2.10)
0<i<j<k

defines a coboundary sinéé&™ o 3* = 0. Hence,(C*(g; M), 3) is a cohomology complex
and the corresponding cohomology spaces
ker{(d* : C*(g; M) — C*(g; M)}
Im{3*=1: Ck1(g; M) — C*(g; M)}
are called thé_eibniz cohomology groups gfwith coefficients inV (see [17-19]).

Note thatif(g, { , }) isaLie algebra andt is a skew-symmetrig1-valuedk-cochain, then
d*c* is a skew-symmetrig1-valued(k + 1)-cochain. Thus, we can consider the subcomplex

H*(g; M) =
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(C};.(g: M), 3) of (C*(g; M), 9) that consists of the skew-symmetrid-valued cochains.
In fact, the cohomology of this subcomplex is just the cohomol&gy, (g; M) of the Lie
algebrag with coefficients inM. Therefore, we have defined a natural homomorphism

i* 2 H (g M) > H (g: M)
between the cohomology group;, (g; M) and H* (g; M).

Examples 2.5. (a) LetM be a differentiable manifold andc(M), [ , ]) be the Lie algebra
of the vector fields oM. Then, the real vector spa¢g° (M, R) is aX(M)-module with
the usual multiplication

XM) x C*(M,R) — C*(M,R) X, = X(f).

Thek-cochainsin the Leibniz cohomology complex areitHmear mappings® : X (M) x
Sk x X(M) — C*(M,R) and the Leibniz cohomology opera@r. C¥,., (M) =
CHX(M); C*(M,R)) — CKL (M) = CHY(X(M); C>*(M,R)) is defined as the

exterior differential operator, that is,

k
de*(Xo, ..., Xe) = Y (=)' Xi(*(Xo, ..., Xi, ..., Xp))
i=0

+ ) DT o K X X X)L X e X))
0<i<j<k

(2.11)

forall Xg, ..., X3 € X(M).

The resultant cohomologhf * (X (M); C*°(M, R)) is theLeibniz cohomologwf M and it

is denoted by} ,;, (M) (for a detailed study of this cohomology, we refer to [20]). Note
that the de Rham cohomology &, H, (M), is just the cohomology of the subcomplex
of the skew-symmetri€ > (M, R)-valued cochains that a&™> (M, R)-linear.

Let (M, A) be a Nambu—Poisson manifold of orderwith Nambu—Poisson bracket
{,...,}. Consider or}/\”’l(COO(M, R)) the brackef , }' characterized by the formula

(b

~

n—1
{AAN A fuct, 81 A oA guea) =Zgl/\---/\{fl,--~,ﬁz—1,gi}/\--~/\gn—1
i1
(2.12)

for f1,..., fu-1,81,---,81-1 € C*®(M,R). Using equation (2.7), we deduce that
(/\”’1(C°°(M, R)), { , }) is a Leibniz algebra (see [7,11,23]). Moreover, the real
vector spac&€>®(M, R) is a/\"~*(C>®(M, R))-module with the multiplication

/\"_1(C°°(M, R)) x C*°(M,R) — C*(M,R)
characterized by

(fano oA famts )= Xpga (). (2.13)
The resultant cohomology

H*(N\""HC®(M, R)); C*(M, R))

was studied in [7, 11].
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3. Leibniz algebroids and Nambu—Poisson manifolds

In this section we will define a generalization of the notion of the Lie algebroid (the Leibniz
algebroid) and we will prove that a Nambu—Poisson manifold has an associated structure of
this type.

Definition 3.1. A Leibniz algebroid structure on a differentiable vector bundleE — M is
a pair that consists of a Leibniz algebra structfre ] on the spacé& (E) of the global cross
sections ofr : E — M and a vector bundle morphissn: E — T M, called the anchor map,
such that the induced map: I'(E) — T'(T M) = X(M) satisfies the following relations:

(@) olls1, s2] = [e(s1), 0(s2)],
(0) [s1, fs2] = fs1, 520 + o(s1) (f)s2,

forall s1,s2, e T'(E) and f € C*(M, R).
Atriple (E,[ , 1. o) is called a Leibniz algebroid ovev!.

Remark 3.2. (a) If (g, {, }) isaLeibniz algebrathety, { , }, 0 = 0) is a Leibniz algebroid
over a point.

(b) Every Lie algebroid over a manifoltf is trivially a Leibniz algebroid. In fact, a Leibniz
algebroid(E, [ , ]. o) over M is a Lie algebroid if and only if the Leibniz bracket []
onT'(E) is skew-symmetric.

If (M, A) is a Poisson manifold then it is possible to define a bracket of 1-formf ps
follows:

[, Bl = Lo B — Lapyr — d(A(a, B)). (3.1)

The space of 1-form&*(M) endowed with this bracket is a Lie algebra in such a sense that
the triple(T*M, [ , ]’, #) is a Lie algebroid oveM, whereT*M is the cotangent bundle of
M and #:T*M — T M is the homomorphism of vector bundles given by (2.4) (see [3, 26]).
Next, we will prove that associated to a Nambu—Poisson manifold of ardeith » > 3,
there is a canonical Leibniz algebroid.
Let (M, A) be anm-dimensional Nambu—Poisson manifold of orden > 3, with
Nambu—Poisson brackét ..., }.

Proposition 3.3. For all «, 8 € Q"~(M) we have
[Ho, #B] = #(Lya B + (=1)" (i (de) A)B)
where# : Q"Y(M) — X(M) is the homomorphism defined in (2.3) and (2.4) @nid the

Lie derivative operator.

Proof. Using (2.3) and (2.4) we have that

[Ho, #B] = i (B)(Laa A) + i (L B)A
= i(B)(Lya ) + #(Lsap). (3.2)
On the other hand,
LigA = (=1)" (i (da) A)A. (3.3)

Indeed, ifx € M andA (x) = 0 then(Luy A)(x) = (—1)" (i (da) A)(x)A(x) = O.



8136 R Ibanez et al

If x € M andA(x) # 0, then (see theorem 2.2) there exist local coordinates . . , x”,

X" .. x™) in an open subséf of M, x € U, such that
B ]
A=—A...A . 3.4
ax1 ax" (3.4)

So, to prove (3.3) it suffices of course to check this formula for lgeat 1)-forms
a:Za,-dxl/\.../\(Tx\,- A Adx,
i=1

with o; € C*(U, R). Now, from (2.3), (2.4) and (3.4), one deduces that (3.3) is true for this
type of (n — 1)-forms.
Finally, using (2.3), (2.4), (3.2) and (3.3), the result follows. O

The above result suggests introducing the following definition.

Definition 3.4. Let (M, A) be anm-dimensional Nambu—Poisson manifold of oraemwith
3 < n < m. The bracket ofn — 1)-forms onM is theR-bilinear operation] , J: Q"~1(M) x
QY M) — Q""1(M) given by

[a. Bl = LB + (=1)"(i(da)A)B (3.5)
fora, B € Q" Y(M).

Remark 3.5. If (M, A) is a Poisson manifold one can consider also the bracket of 1-forms

[ , 1given by (3.5). However, this bracket and the Lie algebroid brackef][ defined by

(3.1) are not directly related. The reason is that, in general, equation (3.3) does not hold for
arbitrary Poisson manifolds.

The mapping [, ] is characterized as follows.

Theorem 3.6.Let (M, A) be anm-dimensional Nambu—Poisson manifold of oraderwith
3 < n < m. Then exists a uniqu-bilinear operation] , ] : Q" (M) x Q" Y(M) —
Q"~1(M) such that;

(@) Forall fi,..., fu-1,81, ..., 81 € C*(M,R), we have

[dfsA...Adfi_1,dgr AL Adg,_1]

= dgl/\ .../\d{fl, ...,fn_l, gi}/\ .../\dgn_l. (36)

(b) Forall f € C*(M,R) anda, B € Q"~1(M), we have
[o. 18] = fle. Bl +#a(f)B 3.7)
[fe. Bl = flo. Bl — iGHa)(Df A B). (3.8)
This operation is given by (3.5).

[y

Il
1N

Proof. It is easy to prove that the bracket defined in (3.5) satisfies (3.6)—(3.8).

Now, suppose that [ ]1 : Q"3(M) x Q" 1(M) — Q"~1(M) is aR-bilinear operation
which satisfies (3.6)—(3.8). Then, [ must be of local type, i.e.d], 8] 1(x0) will depend on
a andpg aroundxg only, for all xo € M. Indeed, if81,y = B for an open neighbourhodd
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of xg, and if f is aC* real-valued function that vanishes outsitdeand equals 1 on a compact
neighbourhood/,, € U, theno = fB1 = fB2 is well defined onM and, by(3.7) we have

[o, o]1(x0) = [, Bl 1(x0) [a.0]1(x0) = [e, B2] 1(x0)

i.e. [o, Bl 1(x0) = [, B2l 1(x0).
Similarly, if aqy = agy andv = fa; = fay then, from (3.8), we deduce that

[v, Bl1(x0) = [o1, Bl1(x0) [v. Bl1(x0) = [o2, Bl1(x0)
that is, foa, B]1(x0) = [er2, Bl1(x0).

Next, we will show that [, 1. =1, -
Let x be a point ofM anda andg (n — 1)-forms onM.

Assume thatx?, . .., x™) are local coordinates in an open neighbourhtoof x and that
in U we have
o= Z ail,,,infldxil Ao Adxit
1<iz<<iyp—1<m
ﬂ = Z Ile---jn—ld'le VANPIVAN dxj"’l.

ISji<<jn-1<m

Using (2.5), (3.5)—(3.8) and the local character of the bracke}{, we obtain that

|[Ol, IB]I 1()6) = Z [ Z (ail...l'"—lﬁjlujn—ld‘le ARERRA d'xjkil
k7

1<ip< - <ipa<m =1,...n—1
I<ji<<ju—1<m
A d{x’l, R e x“} AdxT A LA dx’”*l)

- ﬁjl‘--jnflxxfl...x"“—l (ail-»»in—l) dx/t AL A de?

+ ,8j1...jn71dai1...in71 A iXXil_"x"n—l (dxfl A... A denfl)
+ ail...iufiXx"l...x"ﬂfl (ﬂjl---jaA)del VANV d)CJ"l:| (X)

= [o, B ().
From the arbitrariness of the point it follows that [o, 8]1 = [«, B]- |

Now, we will prove that a Nambu—Poisson manifold of ordemwith » > 3, has an
associated Leibniz algebroid.

Theorem 3.7.Let (M, A) be anm-dimensional Nambu—Poisson manifold of orderwith
3 < n < m. Then, the triple(/\”‘l(T*M), [, 1.# is a Leibniz algebroid oveM, where
[.1: QM) x QM) — Q" 1(M) is the bracket ofn — 1)-forms defined by (3.5)
and# : /\”_1(T*M) —> T M is the homomorphism of vector bundles given by (2.3).

Proof. We must prove that

|[Ol, |[137 V]I]I - |[I[ o, ﬁ]l’ y]l - |[/37 |[C¥, y]]l =0 (39)

fora, B,y € Q"N(M).
From (3.3), (3.5) and proposition 3.3, we obtain that

(I d[a, BHA —H#Ha(i(dB)A) +#B(i(dax)A))A = 0.
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Thus,
i(dfer, BHA = #a(i(dB)A) — #B(i (dar) A). (3.10)
On the other hand, using (3.5), we have that

[o. [B. VIl —[B.[e. VIl = Lipaspry + (=D (#Ha(i(dB)A) — #B(i(dor) A))y
which implies that (see (3.10) and proposition 3.3)

[o. (8. vI] = [B.[. vIl = Ligepry + (D" (de, BDA)y- (3.11)

Therefore, from (3.5) and (3.11), it follows that (3.9) holds. Hence, we deduce that the bracket
[ . Jinduces a Leibniz algebra structure e¥i—1(M).

Using this fact, equation (3.7) and proposition 3.3, we conclude that the triple
(N"HT*M),[ . 1.# is a Leibniz algebroid ove. O

Remark 3.8. In [13] the authors have introduced the notion of a Filippov algebroid, as a
n-ary generalization of Lie algebroids. Indeed, the binary bracket of sections in a Lie
algebroid is replaced in a Filippov algebrold — M by ann-bracket [,..., ] on

['(E) satisfying the fundamental identity and, the anchor map is a vector bundle morphism
A""Y(E) — T M compatible with the:-bracket. In [13,27] am-bracket of 1-forms on a
Nambu—Poisson manifold is defined. However, this bracket does not satisfy the fundamental
identity.

Ingeneral, the bracket defined in (3.5) is not skew-symmetric and consequently the Leibniz
algebroid(\""*(T*M), [ , 1.#) is not a Lie algebroid.

In the following result we characterize when this Leibniz algebroid is a Lie algebroid on
an oriented manifold.

Theorem 3.9.Let M be an oriented manifold of dimensien m > 3. The unique non-null
Nambu—Poisson structures of order greater than twassuch that the Leibniz algebroid is
a Lie algebroid are those defined by non-nulivectors.

Proof. Suppose thaA is a non-nulln-vector. Then M, A) is a Nambu—Poisson manifold of
orderm (see examples 2.1).
Now, if « andg are(m — 1)-forms onM, we consider thémn — 1)-form o on M defined

by
o = [o, B1+[8. ]

We must prove that = 0.
Since the set

A={x € M/A(x) # 0}

is an open subset @ff, A induces a Nambu—Poisson structurg on A of orderm which is
non-null at every point. Then, ad is oriented, we deduce that, is defined by a volume
form on A and the corresponding homomorphism

#,:QHA) — X(A)

given by (2.3) and (2.4), is an isomorphism. Using this last fact, proposition 3.3 and the
skew-symmetry of the Lie bracket [] of vector fields, we obtain that = 0 on A.



Leibniz algebroid associated with a Nambu—Poisson structure 8139

On the other hand, it is obvious thatis null on the exterior oA (note that the exterior
of A is an open subset @ff and thatA = 0 on such a set). Finally, by continuity we conclude
thato = 0 on the boundary of. Thus,c = 0 onM.

Conversely, suppose th@, A) is an orientedr-dimensional Nambu—Poisson manifold
of ordern, with 3 < n < m and that(/\”’l(T*M), [.1.,# isalie algebroid.

SinceA is a non-nulln-vector, there exists a point @f such thatA (x) # 0 and there

exist local coordinatese?, ..., x", x"*1, ..., x™) on an open neighbourhoddof x such that
then-vector Ay induced byA on U is given by (see theorem 2.2)
ad a
Ay =

— A ... A .
ax1 ax"

Using the fact tha’(/\”‘l(T*M), [ ., 1.# is a Lie algebroid, we deduce that the bracket
[.1v:QYU) x Y(U) — Q"YU) defined byAy (see equation (3.5)) is skew-
symmetric.

Now, if n < m we can consider thé: — 1)-forms onU given by

n—3 n+l

a=dx' AL A" 3 Adx” Adx

B=x"2dxtA... Adx"?

and a direct computation proves that0 [«, 8]lv # —[B, «]y. This is a contradiction.
Hencen = m. O

From theorem 3.9, we obtain:

Corollary 3.10. Let M be an oriented manifold of dimensien m > 3, andv be a volume
formonM. Then the Leibniz algebroid associated with the Nambu—Poisson magiifold ,)
is a Lie algebroid.

4. Cohomology of a Leibniz algebroid and the modular class of a Nambu—Poisson
manifold

Let(E,[ , ], 0) be a Leibniz algebroid over a manifoM. From definition 3.1, we deduce
thatC*(M, R) is aI'(E)-module with the multiplication

C(E) x C®°(M,R) — C*®(M,R) (s, f) = o0(s)(f). (4.1)

Thus, we can consider the differential compl€X (' (E); C*(M, R)), 9) and its cohomology
H*(T'(E); C>* (M, R)), that is, the cohomology df (E) with coefficients inC*(M, R) (see

section 2.2).H*(I'(E); C* (M, R)) is calledthe Leibniz algebroid cohomology &f Using

(2.10), we have that

k
3 c (s, .50 = Y _(=Diols)( (s0, ... Ko 50))
i=0

+ Z (_1)iilck(S03-~-7§;a~--asj—lv |[Sivsj]l’sj+la--~vsk) (42)

0<i<j<k
for ¢k € CK(I'(E); C®(M, R)) andso, . . ., s¢ € ['(E).

Remark 4.1. (a) Let (E,[ ,].0) be a Lie algebroid overM and ¢t € CKT(E);
C*®(M,R)). If ¢ is skew-symmetric and> (M, R)-linear thend*c* is also skew-
symmetric and”>° (M, R)-linear.

TheLie algebroid cohomologyf E is the cohomology of the subcomplex of the cochains
which are skew-symmetric ar@™ (M, R)-linear (see [21]).
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(o) If (E,[ , ], 0) is a Leibniz algebroid oved andct € CK(I'(E); C*(M, R)) is skew-
symmetric (respectively; (M, R)-linear) then, in generad’c* is not skew-symmetric
(respectivelyC*> (M, R)-linear).

The following result relates the Leibniz algebroid cohomologyFofvith the Leibniz
cohomology of the base manifold.

Proposition 4.2.Let (E,[ , ], o) be a Leibniz algebroid over a manifold. Suppose that
(C} (M), d) is the Leibniz cohomology complex of the manifiichind denote by

ok 1 C§ i, (M) — CH(I(E); C*(M,R))
the homomorphism defined by
8" () (51, .o s0) = FoGs1), - .., 0(s0)

for ¢t € C},,,(M) andsy, ..., s, € T'(E). Then, the mappings' induce a homomorphism of
complexes

0 (Cl;p(M),d) — (C*(T'(E); C*(M, R)), 3).
Therefore, we have the corresponding homomorphism in cohomology

0:Hf,,(M) — H*(T'(E); C*(M,R)).
Proof. It follows using (2.11), (4.2) and definition 3.1. |

Remark 4.3. Infact, if (E, [ , ], o) is a Lie algebroid oveM, we can define a homomorphism
o between the de Rham cohomologyMt H, (M), and the Leibniz algebroid cohomology
of E given by

0=00i:Hj(M) — H},,(M) — H*(T(E); C*(M,R))
wherei : Hj,(M) — Hj,,, (M) is the homomorphism induced by the natural inclusion.
Using proposition 4.2, we have

Corollary 4.4. Let (M, A) be a Nambu—Poisson manifold of orderwithn > 3, and let
(/\”‘1(T*M), [, 1,# be the Leibniz algebroid associated with Suppose that

# 1 CL(M) — CHQ'HM); C*(M, R))
is the homomorphism defined by
# (N a1, ..., o) = K Hay, ..., H#ay)

for & e Ck,,(M) and a1,...,a € Q"1(M). Then, the mapping# induce a
homomorphism of complexes

#:(Clp(M), d) —> (CH(Q""1(M); C¥(M, R)), d).
Therefore, we have the corresponding homomorphism in cohomology
#:H} ., (M) — H*(Q"Y(M); C*(M,R)).

For the particular case of a Nambu—Poisson structure coming from a volume form, we
deduce the following result:
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Proposition 4.5. Let M be an oriented manifold of dimensien withm > 3, and letv be a
volume form onV. Then the Leibniz cohomology of the algebroid associated(thA ,) is
isomorphic to the Leibniz cohomology M.

Proof. Sincev is a volume form, the homomorphism
#:Q" Y (M) — X(M)
defined by (2.3) and (2.4), is an isomorphism.

Using this fact and corollary 4.4 the result follows. O

Remark 4.6. Note that the Leibniz algebro'(d’\"_l(T*M), [,1,# associated witliMm, A,)
is also a Lie algebroid (see corollary 3.10) and that the Lie algebroid cohomology of
/\"’1(T*M) is isomorphic to the de Rham cohomologydt

For a Nambu—Poisson manifold/, A) of ordern, we denote by , }' the Leibniz
bracket on\"~*(C> (M, R)) characterized by (2.12). Then, the real vector sgeM, R)
is a /\”’1(C°°(M, R))-module with the multiplication given by (2.13). Thus, we can
consider the corresponding differential complex (/\"~*(C>(M, R)); C*(M, R)), 3') and
its cohomologyH*(\" "1 (C®(M, R)); C®(M, R)).

In the next result, we obtain a relation between the Leibniz algebroid cohomology of
N"1(T*M) and the cohomology?*(/\"~*(C>(M, R)); C*(M, R)).

Proposition 4.7. Let (M, A) be a Nambu—Poisson manifold of ordgrwithr > 3. Then the
mapping

@ : \"HC®(M,R)) — Q"H(M) AAA fuca dfiAa . Adf (4.3)
induces a natural homomorphism of complexes

$ 1 (CH(QHM); C¥(M,R)), 9) —> (C*(A\"H(C®(M,R)); C*(M,R)), )

and therefore we have the corresponding homomorphism in cohomology

O H (Q"Y(M); C®(M,R)) — H*(\""HC>®(M,R)); C*(M,R)).

Proof. Consider the mappings

OF : CHQ THM); € (M, R)) —> CH(N"TH(C™(M,R)); C™(M, R))
defined by

OK(KYV(Fr, ..., F) = (D), ..., D(F)) (4.4)

for F1, ..., Fr € N""HC™(M, R)).
From (2.12), (3.6) and (4.3), we obtain

S{F;, F;}) =[2F), P(F)].

Using this fact, equations (2.5), (2.10), (2.13), (4.2) and (4.4), we obtain that the magpings
induce a homomorphism of complexes. O

Next, we will introduce the modular class of an oriented Nambu—Poisson manifold. For
this purpose, we prove the following result.
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Theorem 4.8.Let (M, A) be an orientedn-dimensional Nambu—Poisson manifold of order
n, withn > 3, andv be a volume form. Consider the mapping

M, C®¥M,R) x ... 1 x C®(M,R) — C®*(M,R)
defined by

Lx, , v=M(ft, ., fu-1)V (4.5)
for f1,..., fr_1 € C®°(M,R). Then:

(&) M, is a skew-symmetri@ — 1)-linear mapping and a derivation in each argument with
respect to the usual product of functions. Thus, defines anin — 1)-vector onM.
(b) The mapping

fn-1

My QN M) — C®(M,R) o> ()M, (4.6)

defines al-cocycle in the Leibniz cohomology complex associated with the Leibniz
algebroid( A" *(T*M), [ , ].%.

(c) The cohomology clags1,] € HY(Q"1(M); C*(M, R)) does not depend on the chosen
volume form.

Proof.
() It follows using (2.1), (2.2), (2.5), (2.6) and (4.5).
(b) We will show that for alke € Q"~1(M) we have
Ligv = [i (@) M, + (=1)" 71 (da)A)]v. 4.7

Indeed, suppose that= fdfi A ... Adf,_1, with f, f1,..., fu_1 € C®(M, R).
A direct computation proves that

Liygv :df/\inl _f71V+va(fl ----- fn—l)v

‘‘‘‘‘

=df Aix, v+ E)M)v. (4.8)
Now, sinceix, . (df Av) =0, we deduce that
df A ixfl..,fn_lv = Xfl"'fn—l(f)v'

Adding this formula to (4.8) we obtain that (4.7) holds tor= fdfi A ... Adf,_1.
However, this implies that (4.7) holds for alle Q" 1(M).
Using (3.10), (4.7) and theorem 3.7, we have that

i([or, BDMy = Ligaprv + (=D" (@ (d[er, B A)v = #Ha (i (B)M,) — #B(i (@) M,).

This proves (b) (see (4.2)).

(c) Letv’ be another volume form oM. Then there existg € C*°(M, R), f # 0 at every
point, such that’ = fv. We can suppose, without the loss of generality, that 0.
A direct computation, using (4.7), shows that forale Q"—1(M)

()M, =i(a)M, +#ax(n f)
which implies that (see (4.2))
M,y =M, +a(n f). O

Theorem 4.8 allows us to introduce the following definition.
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Definition 4.9. Let (M, A) be an oriented Nambu—Poisson manifold of ordewithn > 3,
and M, be the cocycle defined by (4.6). The cohomology class

[Ma] € HH(Q"1(M); C*(M, R))
is called the modular class o/, A).

Remark 4.10. Definition 4.9 extends for Nambu—Poisson manifolds of order greater than two
the notion of modular class of a Poisson manifold introduced by Weinstein [29] (see also [4]).

For a Nambu—Poisson structure induced by a volume form, we deduce:

Proposition 4.11. Let M be an orientedr-dimensional manifold and a volume form or/.
Then the modular class oM, A,) is null.

Proof. Using (2.6)—(2.8), we obtain that
[:Xflmfn—lv = 0
forall f1,..., f,_1 € C®(M, R). This implies that\,, = 0 and thereforemM,, = 0. O

Remark 4.12. Suppose thalv and L are oriented manifolds and letbe a volume form on
N. The Nambu—Poisson structurg, on N induces a Nambu—Poisson structuteon the
product manifold = N x L (see examples 2.1) and from proposition 4.11, it follows that
the modular class af, A) is null.

Using theorem 2.2 and remark 4.12, we have the following.

Corollary 4.13. Let M be an orientedn-dimensional Nambu—Poisson manifold of orader
with 3 < n < m. If at a pointx € M we haveA(x) # O, then there exists an open
neighbourhood’ of x in M such that the modular class @f/, Ay) is null. Here A, denotes
the Nambu—Poisson structure inducedtpn U.

The above results and the following example show that the vanishing of the modular class
of a Nambu—Poisson manifold is closely related with its regularity.
Example 4.14.Consider orR3 the 3-vector defined by
P S
= X — —_— —_—
oxl  09x2  09x3
where(x1, x2, x3) denote the usual coordinates BA
The 3-vectorA defines a Nambu—Poisson structure of order thre&bn
Let v be the volume form given by
v =dxl Adx?Adx
A direct computation proves that
a ad
— 43 _ 3 _ .3
Xx1xz_x ﬁ XX1X3_—x W szxs_x ﬁ
and
Lx,,v="v Lx,,v=~Lx,,v=0.

Thus,M, = 3/3x* A 3/3x2.
Now, if the modular class afR®, A) were null then there exists € C*°(R3, R) such that
(M, = df (o)
for all @ € Q2(R3). Takinga = dx* A dx?, we would deduce that

3
1= X,.2(f) = x3a—xf3.

However, this is not possible. Thus{,] # O.
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