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Abstract. The notion of a Leibniz algebroid is introduced, and it is shown that each Nambu–
Poisson manifold has associated a canonical Leibniz algebroid. This fact permits one to define the
modular class of a Nambu–Poisson manifold as an appropriate cohomology class, extending the
well known modular class of Poisson manifolds.

1. Introduction

A Lie algebroid is a natural generalization of the notion of Lie algebra, and also of the tangent
bundle of a manifold. There are many other interesting examples, for instance, the cotangent
bundle of any Poisson manifold possesses a natural Lie algebroid structure. Roughly speaking,
a Lie algebroid over a manifoldM is a vector bundleE overM such that its space of sections
0(E) has a structure of Lie algebra plus a mapping (the anchor map) fromE ontoTM which
provides a Lie algebra homomorphism from0(E) into the Lie algebra of vector fieldsX(M).

The action of0(E) on C∞(M,R) defines the Lie algebroid cohomology ofM. For a
Poisson manifoldM, the associated Lie algebroid is just the triple(T ∗M, [[ , ]] ′, #), where
[[ , ]] ′ is the bracket of 1-forms and # is the mapping from 1-forms into tangent vectors defined
by the Poisson tensor. For an oriented Poisson manifoldM and its associated Lie algebroid,
Weinstein [29, 30] has defined the so-called modular class ofM, which is an element of the
corresponding Lie algebroid cohomology (in fact, an element of the Lichnerowicz–Poisson
cohomology spaceH 1

LP (M)). The modular classXν is defined as the operator which assigns
to each functionf the divergence with respect toν of its Hamiltonian vector fieldXf , where
ν is a volume form onM. A direct computation shows that the modular class of a symplectic
manifold is null. Indeed, the vanishing of the modular class of a Poisson manifold is closely
related with its regularity. Moreover, it was proved by Xu [31] (see also [4, 9]) that the canonical
homology is dual to the Lichnerowicz–Poisson cohomology for unimodular Poisson structures,
that is, for Poisson structures with null modular class. Also, it should be remarked that the
modular class was the tool recently used by Dufour and Haraki [8] and by Liu and Xu [16] to
classify quadratic Poisson structures.
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Our interest is to extend the above results for Nambu–Poisson manifolds. The concept
of a Nambu–Poisson structure was introduced by Takhtajan [25] in order to find an axiomatic
formalism for then-bracket operation

{f1, . . . , fn} = det

(
∂fi

∂xj

)
proposed by Nambu [24] to generalize Hamiltonian mechanics (see also [2, 5, 6, 10]). A
Nambu–Poisson manifold is a manifoldM endowed with a skew-symmetricn-bracket of
functions{, . . . , } satisfying the Leibniz rule and the fundamental identity

{f1, . . . , fn−1, {g1, . . . , gn}} =
n∑
i=1

{g1, . . . , {f1, . . . , fn−1, gi}, . . . , gn}

for all f1, . . . , fn−1, g1, . . . , gn ∈ C∞(M,R). The local and global structure of a Nambu–
Poisson manifold were elucidated in recent papers [1, 11, 14, 22, 23]. Indeed, a Nambu–
Poisson manifold of order greater than two consists of pieces which are volume manifolds, in
the same way that a Poisson manifold is made of symplectic pieces. Recently, an interesting
recursive characterization of Nambu–Poisson structures was obtained in [12].

In this paper we introduce the notion of a Leibniz algebroid—a natural generalization of
a Lie algebroid. The notion of Leibniz algebra was recently introduced by Loday [17, 18] (see
also [19]) as a non-commutative version of Lie algebras. Indeed, a Leibniz algebra is a real
vector spaceg endowed with aR-bilinear mapping{ , } satisfying the Leibniz identity

{a1, {a2, a3}} − {{a1, a2}, a3} − {a2, {a1, a3}} = 0

for all a1, a2, a3 ∈ g. If the bracket is skew-symmetric we recover the notion of Lie algebra.
Next, the notion of a Leibniz algebroid can be introduced in the same way as that for the case of
Lie algebroids. One of the main results of the present paper is to associate a Leibniz algebroid
to each Nambu–Poisson manifoldM. The Leibniz algebroid attached toM is just the triple
(
∧n−1

(T ∗M), [[ , ]] , #), where [[, ]] : �n−1(M)×�n−1(M) −→ �n−1(M) is the bracket of
(n− 1)-forms defined by

[[α, β]] = L#αβ + (−1)n(i(dα)3)β

for α, β ∈ �n−1(M), and # :
∧n−1

(T ∗M) −→ TM is the homomorphism of vector bundles
given by #(β) = i(β)3. Here3 is the Nambu–Poissonn-vector. In addition, it is proved that
the only non-null Nambu–Poisson structures of order greater than two on an oriented manifold
M of dimensionm, with m > 3, such that its Leibniz algebroid is a Lie algebroid are those
defined by non-nullm-vectors.

As in the case of Poisson manifolds, we define the modular class of an oriented Nambu–
Poissonm-dimensional manifoldM of ordern. Indeed, ifν is a volume form onM then the
mapping

Mν : C∞(M,R)× . . .(n−1 . . .× C∞(M,R) −→ C∞(M,R)

given by

LXf1...fn−1
ν =Mν(f1, . . . , fn−1)ν

is an(n− 1)-vector onM, whereXf1...fn−1 = #(df1 ∧ . . . ∧ dfn−1) is the Hamiltonian vector
field associated with the functionsf1, . . . , fn−1. Next, the mapping

M3 : �n−1(M) −→ C∞(M,R) α 7→ i(α)Mν
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defines a 1-cocycle in the Leibniz cohomology complex associated with the Leibniz algebroid
(
∧n−1

(T ∗M), [[ , ]] , #). The cohomology class [M3] ∈ H 1(�n−1(M);C∞(M,R)) does not
depend on the chosen volume form and it is called the modular class ofM. As in the case
of Poisson manifolds it is proved that the modular class of a volume manifold is null. In a
forthcoming paper we will investigate the role played for the modular class in the problem of
classification of Nambu–Poisson manifolds. We are also investigating the existence of a dual
homology to the Leibniz algebroid cohomology, which would be related with the vanishing of
the modular class (see [4, 9, 31] for the case of Lie algebroids and Poisson manifolds).

2. Preliminaries

All the manifolds considered in this paper are assumed to be connected.

2.1. Nambu–Poisson structures

LetM be a differentiable manifold of dimensionm. Denote byX(M) the Lie algebra of vector
fields onM, byC∞(M,R) the algebra ofC∞ real-valued functions onM and by�k(M) the
space ofk-forms onM.

An almost-Poisson bracketof ordern (n 6 m) onM (see [14]) is ann-linear mapping
{, . . . , } : C∞(M,R) × . . .(n . . . × C∞(M,R) → C∞(M,R) satisfying the following
properties:

(1) Skew-symmetry:

{f1, . . . , fn} = (−1)ε(σ ){fσ(1), . . . , fσ(n)} (2.1)

for all f1, . . . , fn ∈ C∞(M,R) andσ ∈ Symm(n), whereSymm(n) is a symmetric group
of n elements andε(σ ) is the parity of the permutationσ .

(2) Leibniz rule:

{f1g1, f2, . . . , fn} = f1{g1, f2, . . . , fn} + g1{f1, f2, . . . , fn} (2.2)

for all f1, . . . , fn, g1 ∈ C∞(M,R).
If {, . . . , } is an almost-Poisson bracket of ordern then we define a skew-symmetric tensor

3 of type(n, 0) (n-vector) as follows:

3(df1, . . . ,dfn) = {f1, . . . , fn}
for f1, . . . , fn ∈ C∞(M,R). Conversely, given ann-vector onM, the above formula defines
an almost-Poisson bracket of ordern. The pair(M,3) is called ageneralized almost-Poisson
manifold of ordern.

If
∧n−1

(T ∗M) is the vector bundle of the(n − 1)-forms onM then3 induces a
homomorphism of vector bundles

# :
∧n−1

(T ∗M) −→ TM

by defining

#(β) = i(β)3(x) (2.3)

for β ∈∧n−1
(T ∗x M) andx ∈ M, wherei(β) is the contraction byβ. Denote also by

# :�n−1(M)→ X(M)
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the homomorphism ofC∞(M,R)-modules given by

#(α)(x) = #(α(x)) (2.4)

for all α ∈ �n−1(M) andx ∈ M. Then, iff1, . . . , fn−1 aren− 1 functions onM, we define
a vector field

Xf1...fn−1 = #(df1 ∧ . . . ∧ dfn−1) (2.5)

which is called theHamiltonian vector fieldassociated with the Hamiltonian functionsf1, . . . ,

fn−1. From (2.5) it follows that

Xf1...fn−1(fn) = {f1, . . . , fn−1, fn}. (2.6)

A richer structure, related with interesting dynamical problems, can be considered adding
to the almost-Poisson bracket{, . . . , } the following integrability condition (fundamental
identity):

{f1, . . . , fn−1, {g1, . . . , gn}} =
n∑
i=1

{g1, . . . , {f1, . . . , fn−1, gi}, . . . , gn} (2.7)

for allf1, . . . , fn−1, g1, . . . , gn functions onM. In this case,{, . . . , } is called aNambu–Poisson
bracketand(M,3) is aNambu–Poisson manifold of ordern (see [25]).

In fact, ann-vector3 on M defines a Nambu–Poisson structure if the Hamiltonian
vector fields are derivations of the algebra(C∞(M,R) × . . .(n . . . × C∞(M,R), {, . . . , })
or equivalently, every Hamiltonian vector fieldXf1...fn−1 is an infinitesimal automorphism of
3, that is,

LXf1...fn−1
3 = 0.

Examples 2.1. (a) ThePoisson manifoldsare just the Nambu–Poisson manifolds of order
two [15, 26, 28].
Another examples of Nambu–Poisson manifolds are the following.

(b) LetN be an orientedm-dimensional manifold and choose a volume formνN onN . Given
m functionsf1, . . . , fm onN , we define itsm-bracket by the formula

df1 ∧ . . . ∧ dfm = {f1, . . . , fm}νN . (2.8)

It is not hard to prove that it is a Nambu–Poisson bracket (see [11]). Denote by3νN the
m-vector associated with this bracket. Note that for the Nambu–Poisson structure3νN

the homomorphism # :�m−1(N) −→ X(N) is an isomorphism. Furthermore, if3 is a
Nambu–Poisson structure of orderm and3 6= 0 at every point then there exists a volume
form ν onN such that3 = 3νN (see [14]).

(c) Let3N be an arbitrarym-vector on an orientedm-dimensional manifoldN with volume
form νN . Then, there exists a functionf ∈ C∞(N,R) such that3N = f3νN . Moreover,
if f1, . . . , fm−1 arem− 1 functions onN andXf1...fm−1 is the corresponding Hamiltonian
vector field with respect to them-vector3N , it follows thatLXf1...fm−1

3N = 0. Thus, we
deduce that(N,3N) is a Nambu–Poisson manifold of orderm.

(d) If V is ak-dimensional differentiable manifold,3N induces anm-vector3 on the product
N × V and(N × V,3) is a Nambu–Poisson manifold of orderm.

The following theorem describes the local structure of the Nambu–Poisson brackets of
ordern, with n > 3.
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Theorem 2.2. [1, 11, 14, 22, 23] LetM be a differentiable manifold of dimensionm. Then-
vector3, n > 3, defines a Nambu–Poisson structure onM if and only if for allx ∈ M where
3(x) 6= 0, there exist local coordinates(x1, . . . , xn, xn+1, . . . , xm) aroundx such that

3 = ∂

∂x1
∧ . . . ∧ ∂

∂xn
.

Remark 2.3. A point x of a Nambu–Poisson manifold(M,3) of ordern > 3 is said to be
regular if 3(x) 6= 0.

Remark 2.4. Let (M,3) be a Nambu–Poisson manifold of ordern, with n > 3, and consider
thecharacteristic distributionD onM given by

x ∈ M −→ D(x) = #(3n−1T ∗x M) = 〈{Xf1...fn−1(x)/f1, . . . , fn−1 ∈ C∞(M,R)}〉 ⊆ TxM.
Then,D defines a generalized foliation onM whose leaves are either points orn-dimensional
manifolds endowed with a Nambu–Poisson structure coming from a volume form (see [14]).

2.2. Leibniz algebras and cohomology

First, we recall the definition of real Leibniz algebra (see [17–19]).
A Leibniz algebra structureon a real vector spaceg is aR-bilinear map{ , } : g× g→ g

satisfying theLeibniz identity, that is,

{a1, {a2, a3}} − {{a1, a2}, a3} − {a2, {a1, a3}} = 0 (2.9)

for a1, a2, a3 ∈ g. In such a case, one says that(g, { , }) is aLeibniz algebra.
Moreover, if the skew-symmetric condition is required then(g, { , }) is a Lie algebra. In

this sense, a Leibniz algebra is a non-commutative version of a Lie algebra.
Let (g, { , }) be a Leibniz algebra andM be a real vector space endowed with aR-bilinear

map

g×M −→M
such that{a1, a2}m = a1(a2m) − a2(a1m), for all a1, a2 ∈ g andm ∈ M. ThenM is a
g-module relative to the representationof g onM.

If M is ag-module we can introduce a cohomology complex as follows.
A k-linear mappingck : g × . . .(k . . . × g −→M is called aM-valuedk-cochain. We

denote byCk(g;M) the real vector space of these cochains.
The operator∂k : Ck(g;M) −→ Ck+1(g;M) given by

∂kck(a0, . . . , ak) =
k∑
i=0

(−1)iaic
k(a0, . . . , âi , . . . , ak)

+
∑

06i<j6k
(−1)i−1ck

(
a0, . . . , âi , . . . , aj−1, {ai, aj }, aj+1, . . . , ak

)
(2.10)

defines a coboundary since∂k+1 ◦ ∂k = 0. Hence,(C∗(g;M), ∂) is a cohomology complex
and the corresponding cohomology spaces

Hk(g;M) = ker{∂k : Ck(g;M)→ Ck+1(g;M)}
Im{∂k−1 : Ck−1(g;M)→ Ck(g;M)}

are called theLeibniz cohomology groups ofg with coefficients inM (see [17–19]).
Note that if(g, { , }) is a Lie algebra andck is a skew-symmetricM-valuedk-cochain, then

∂kck is a skew-symmetricM-valued(k + 1)-cochain. Thus, we can consider the subcomplex
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(C∗Lie(g;M), ∂) of (C∗(g;M), ∂) that consists of the skew-symmetricM-valued cochains.
In fact, the cohomology of this subcomplex is just the cohomologyH ∗Lie(g;M) of the Lie
algebrag with coefficients inM. Therefore, we have defined a natural homomorphism

ik : Hk
Lie(g;M)→ Hk(g;M)

between the cohomology groupsHk
Lie(g;M) andHk(g;M).

Examples 2.5. (a) LetM be a differentiable manifold and(X(M), [ , ]) be the Lie algebra
of the vector fields onM. Then, the real vector spaceC∞(M,R) is aX(M)-module with
the usual multiplication

X(M)× C∞(M,R) −→ C∞(M,R) (X, f ) 7→ X(f ).

Thek-cochains in the Leibniz cohomology complex are thek-linear mappingsck : X(M)×
. . .(k . . . × X(M) → C∞(M,R) and the Leibniz cohomology operatord : CkLeib(M) =
Ck(X(M);C∞(M,R)) −→ Ck+1

Leib(M) = Ck+1(X(M);C∞(M,R)) is defined as the
exterior differential operator, that is,

dck(X0, . . . , Xk) =
k∑
i=0

(−1)iXi(c
k(X0, . . . , X̂i , . . . , Xk))

+
∑

06i<j6k
(−1)i−1ck(X0, . . . , X̂i , . . . , Xj−1, [Xi,Xj ], Xj+1, . . . , Xk)

(2.11)

for all X0, . . . , Xk ∈ X(M).

The resultant cohomologyH ∗(X(M);C∞(M,R)) is theLeibniz cohomologyofM and it
is denoted byH ∗Leib(M) (for a detailed study of this cohomology, we refer to [20]). Note
that the de Rham cohomology ofM,H ∗dR(M), is just the cohomology of the subcomplex
of the skew-symmetricC∞(M,R)-valued cochains that areC∞(M,R)-linear.

(b) Let (M,3) be a Nambu–Poisson manifold of ordern with Nambu–Poisson bracket
{, . . . , }. Consider on

∧n−1
(C∞(M,R)) the bracket{ , }′ characterized by the formula

{f1 ∧ . . . ∧ fn−1, g1 ∧ . . . ∧ gn−1}′ =
n−1∑
i=1

g1 ∧ . . . ∧ {f1, . . . , fn−1, gi} ∧ . . . ∧ gn−1

(2.12)

for f1, . . . , fn−1, g1, . . . , gn−1 ∈ C∞(M,R). Using equation (2.7), we deduce that
(
∧n−1

(C∞(M,R)), { , }′) is a Leibniz algebra (see [7, 11, 23]). Moreover, the real
vector spaceC∞(M,R) is a

∧n−1
(C∞(M,R))-module with the multiplication∧n−1

(C∞(M,R))× C∞(M,R) −→ C∞(M,R)

characterized by

(f1 ∧ . . . ∧ fn−1, f ) 7→ Xf1...fn−1(f ). (2.13)

The resultant cohomology

H ∗(
∧n−1

(C∞(M,R));C∞(M,R))
was studied in [7, 11].
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3. Leibniz algebroids and Nambu–Poisson manifolds

In this section we will define a generalization of the notion of the Lie algebroid (the Leibniz
algebroid) and we will prove that a Nambu–Poisson manifold has an associated structure of
this type.

Definition 3.1. A Leibniz algebroid structure on a differentiable vector bundleπ : E→ M is
a pair that consists of a Leibniz algebra structure[[ , ]] on the space0(E) of the global cross
sections ofπ : E −→ M and a vector bundle morphism% : E→ TM, called the anchor map,
such that the induced map% : 0(E) −→ 0(TM) = X(M) satisfies the following relations:

(a) %[[s1, s2]] = [%(s1), %(s2)],
(b) [[s1, f s2]] = f [[s1, s2]] + %(s1)(f )s2,

for all s1, s2 ∈ 0(E) andf ∈ C∞(M,R).
A triple (E, [[ , ]] , %) is called a Leibniz algebroid overM.

Remark 3.2. (a) If (g, { , }) is a Leibniz algebra then(g, { , }, % ≡ 0) is a Leibniz algebroid
over a point.

(b) Every Lie algebroid over a manifoldM is trivially a Leibniz algebroid. In fact, a Leibniz
algebroid(E, [[ , ]] , %) overM is a Lie algebroid if and only if the Leibniz bracket [[, ]]
on0(E) is skew-symmetric.

If (M,3) is a Poisson manifold then it is possible to define a bracket of 1-forms [[, ]] ′ as
follows:

[[α, β]] ′ = L#(α)β − L#(β)α − d(3(α, β)). (3.1)

The space of 1-forms�1(M) endowed with this bracket is a Lie algebra in such a sense that
the triple(T ∗M, [[ , ]] ′, #) is a Lie algebroid overM, whereT ∗M is the cotangent bundle of
M and # :T ∗M → TM is the homomorphism of vector bundles given by (2.4) (see [3, 26]).

Next, we will prove that associated to a Nambu–Poisson manifold of ordern, with n > 3,
there is a canonical Leibniz algebroid.

Let (M,3) be anm-dimensional Nambu–Poisson manifold of ordern, n > 3, with
Nambu–Poisson bracket{ , . . . , }.
Proposition 3.3. For all α, β ∈ �n−1(M) we have

[#α, #β] = #(L#αβ + (−1)n(i(dα)3)β)

where# : �n−1(M) −→ X(M) is the homomorphism defined in (2.3) and (2.4) andL is the
Lie derivative operator.

Proof. Using (2.3) and (2.4) we have that

[#α, #β] = i(β)(L#α3) + i(L#αβ)3

= i(β)(L#α3) + #(L#αβ). (3.2)

On the other hand,

L#α3 = (−1)n(i(dα)3)3. (3.3)

Indeed, ifx ∈ M and3(x) = 0 then(L#α3)(x) = (−1)n(i(dα)3)(x)3(x) = 0.
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If x ∈ M and3(x) 6= 0, then (see theorem 2.2) there exist local coordinates(x1, . . . , xn,
xn+1, . . . , xm) in an open subsetU of M, x ∈ U , such that

3 = ∂

∂x1
∧ . . . ∧ ∂

∂xn
. (3.4)

So, to prove (3.3) it suffices of course to check this formula for local(n− 1)-forms

α =
n∑
i=1

αi dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

with αi ∈ C∞(U,R). Now, from (2.3), (2.4) and (3.4), one deduces that (3.3) is true for this
type of(n− 1)-forms.

Finally, using (2.3), (2.4), (3.2) and (3.3), the result follows. �
The above result suggests introducing the following definition.

Definition 3.4. Let (M,3) be anm-dimensional Nambu–Poisson manifold of ordern, with
36 n 6 m. The bracket of(n−1)-forms onM is theR-bilinear operation[[ , ]]: �n−1(M)×
�n−1(M) −→ �n−1(M) given by

[[α, β]] = L#αβ + (−1)n(i(dα)3)β (3.5)

for α, β ∈ �n−1(M).

Remark 3.5. If (M,3) is a Poisson manifold one can consider also the bracket of 1-forms
[[ , ]] given by (3.5). However, this bracket and the Lie algebroid bracket [[, ]] ′ defined by
(3.1) are not directly related. The reason is that, in general, equation (3.3) does not hold for
arbitrary Poisson manifolds.

The mapping [[, ]] is characterized as follows.

Theorem 3.6.Let (M,3) be anm-dimensional Nambu–Poisson manifold of ordern, with
3 6 n 6 m. Then exists a uniqueR-bilinear operation[[ , ]] : �n−1(M) × �n−1(M) →
�n−1(M) such that:

(a) For all f1, . . . , fn−1, g1, . . . , gn−1 ∈ C∞(M,R), we have

[[df1 ∧ . . . ∧ dfn−1, dg1 ∧ . . . ∧ dgn−1]]

=
n−1∑
i=1

dg1 ∧ . . . ∧ d{f1, . . . , fn−1, gi} ∧ . . . ∧ dgn−1. (3.6)

(b) For all f ∈ C∞(M,R) andα, β ∈ �n−1(M), we have

[[α, fβ]] = f [[α, β]] + #α(f )β (3.7)

[[f α, β]] = f [[α, β]] − i(#α)(df ∧ β). (3.8)

This operation is given by (3.5).

Proof. It is easy to prove that the bracket defined in (3.5) satisfies (3.6)–(3.8).
Now, suppose that [[, ]] 1 : �n−1(M)×�n−1(M) −→ �n−1(M) is aR-bilinear operation

which satisfies (3.6)–(3.8). Then [[, ]] 1 must be of local type, i.e. [[α, β]] 1(x0) will depend on
α andβ aroundx0 only, for all x0 ∈ M. Indeed, ifβ1|U = β2|U for an open neighbourhoodU



Leibniz algebroid associated with a Nambu–Poisson structure 8137

of x0, and iff is aC∞ real-valued function that vanishes outsideU , and equals 1 on a compact
neighbourhoodVx0 ⊆ U , thenσ = fβ1 = fβ2 is well defined onM and, by(3.7) we have

[[α, σ ]] 1(x0) = [[α, β1]] 1(x0) [[α, σ ]] 1(x0) = [[α, β2]] 1(x0)

i.e. [[α, β1]] 1(x0) = [[α, β2]] 1(x0).
Similarly, if α1|U = α2|U andν = f α1 = f α2 then, from (3.8), we deduce that

[[ν, β]] 1(x0) = [[α1, β]] 1(x0) [[ν, β]] 1(x0) = [[α2, β]] 1(x0)

that is, [[α1, β]] 1(x0) = [[α2, β]] 1(x0).
Next, we will show that [[, ]] 1 = [[ , ]].
Let x be a point ofM andα andβ (n− 1)-forms onM.
Assume that(x1, . . . , xm) are local coordinates in an open neighbourhoodU of x and that

in U we have

α =
∑

16i1<···<in−16m
αi1...in−1dx

i1 ∧ . . . ∧ dxin−1

β =
∑

16j1<···<jn−16m
βj1...jn−1dx

j1 ∧ . . . ∧ dxjn−1.

Using (2.5), (3.5)–(3.8) and the local character of the bracket [[, ]] 1, we obtain that

[[α, β]] 1(x) =
∑

16i1<···<in−16m
16j1<···<jn−16m

[ ∑
k=1,...,n−1

(
αi1...in−1βj1...jn−1dx

j1 ∧ . . . ∧ dxjk−1

∧ d
{
xi1, . . . , xin−1, xjk

} ∧ dxjk+1 ∧ . . . ∧ dxjn−1
)

− βj1...jn−1Xxi1 ...xin−1

(
αi1...in−1

)
dxj1 ∧ . . . ∧ dxjn−1

+ βj1...jn−1dαi1...in−1 ∧ iX
xi1 ...xin−1

(
dxj1 ∧ . . . ∧ dxjn−1

)
+ αi1...in−1Xxi1 ...xin−1

(
βj1...jn−1

)
dxj1 ∧ . . . ∧ dxjn−1

]
(x)

= [[α, β]](x).

From the arbitrariness of the pointx, it follows that [[α, β]] 1 = [[α, β]]. �

Now, we will prove that a Nambu–Poisson manifold of ordern, with n > 3, has an
associated Leibniz algebroid.

Theorem 3.7.Let (M,3) be anm-dimensional Nambu–Poisson manifold of ordern, with
3 6 n 6 m. Then, the triple(

∧n−1
(T ∗M), [[ , ]] , #) is a Leibniz algebroid overM, where

[[ , ]] : �n−1(M)× �n−1(M) −→ �n−1(M) is the bracket of(n − 1)-forms defined by (3.5)
and# :

∧n−1
(T ∗M) −→ TM is the homomorphism of vector bundles given by (2.3).

Proof. We must prove that

[[α, [[β, γ ]]]] − [[[[ α, β]] , γ ]] − [[β, [[α, γ ]]]] = 0 (3.9)

for α, β, γ ∈ �n−1(M).
From (3.3), (3.5) and proposition 3.3, we obtain that

(i(d[[α, β]])3− #α(i(dβ)3) + #β(i(dα)3))3 = 0.
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Thus,

i(d[[α, β]])3 = #α(i(dβ)3)− #β(i(dα)3). (3.10)

On the other hand, using (3.5), we have that

[[α, [[β, γ ]]]] − [[β, [[α, γ ]]]] = L[#α,#β]γ + (−1)n(#α(i(dβ)3)− #β(i(dα)3))γ

which implies that (see (3.10) and proposition 3.3)

[[α, [[β, γ ]]]] − [[β, [[α, γ ]]]] = L#[[α,β]]γ + (−1)n(i(d[[α, β]])3)γ. (3.11)

Therefore, from (3.5) and (3.11), it follows that (3.9) holds. Hence, we deduce that the bracket
[[ , ]] induces a Leibniz algebra structure on�n−1(M).

Using this fact, equation (3.7) and proposition 3.3, we conclude that the triple
(
∧n−1

(T ∗M), [[ , ]] , #) is a Leibniz algebroid overM. �

Remark 3.8. In [13] the authors have introduced the notion of a Filippov algebroid, as a
n-ary generalization of Lie algebroids. Indeed, the binary bracket of sections in a Lie
algebroid is replaced in a Filippov algebroidE −→ M by an n-bracket [[ , . . . , ]] on
0(E) satisfying the fundamental identity and, the anchor map is a vector bundle morphism
3n−1(E) −→ TM compatible with then-bracket. In [13, 27] ann-bracket of 1-forms on a
Nambu–Poisson manifold is defined. However, this bracket does not satisfy the fundamental
identity.

In general, the bracket defined in (3.5) is not skew-symmetric and consequently the Leibniz
algebroid(

∧n−1
(T ∗M), [[ , ]] , #) is not a Lie algebroid.

In the following result we characterize when this Leibniz algebroid is a Lie algebroid on
an oriented manifold.

Theorem 3.9.LetM be an oriented manifold of dimensionm, m > 3. The unique non-null
Nambu–Poisson structures of order greater than two onM such that the Leibniz algebroid is
a Lie algebroid are those defined by non-nullm-vectors.

Proof. Suppose that3 is a non-nullm-vector. Then(M,3) is a Nambu–Poisson manifold of
orderm (see examples 2.1).

Now, if α andβ are(m− 1)-forms onM, we consider the(m− 1)-form σ onM defined
by

σ = [[α, β]] + [[ β, α]] .

We must prove thatσ = 0.
Since the set

A = {x ∈ M/3(x) 6= 0}
is an open subset ofM, 3 induces a Nambu–Poisson structure3A onA of orderm which is
non-null at every point. Then, asM is oriented, we deduce that3A is defined by a volume
form onA and the corresponding homomorphism

#A : �n−1(A) −→ X(A)

given by (2.3) and (2.4), is an isomorphism. Using this last fact, proposition 3.3 and the
skew-symmetry of the Lie bracket [, ] of vector fields, we obtain thatσ = 0 onA.
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On the other hand, it is obvious thatσ is null on the exterior ofA (note that the exterior
of A is an open subset ofM and that3 = 0 on such a set). Finally, by continuity we conclude
thatσ = 0 on the boundary ofA. Thus,σ = 0 onM.

Conversely, suppose that(M,3) is an orientedm-dimensional Nambu–Poisson manifold
of ordern, with 36 n 6 m and that(

∧n−1
(T ∗M), [[ , ]] , #) is a Lie algebroid.

Since3 is a non-nulln-vector, there exists a point ofM such that3(x) 6= 0 and there
exist local coordinates(x1, . . . , xn, xn+1, . . . , xm) on an open neighbourhoodU of x such that
then-vector3U induced by3 onU is given by (see theorem 2.2)

3U = ∂

∂x1
∧ . . . ∧ ∂

∂xn
.

Using the fact that(
∧n−1

(T ∗M), [[ , ]] , #) is a Lie algebroid, we deduce that the bracket
[[ , ]]U : �n−1(U) × �n−1(U) −→ �n−1(U) defined by3U (see equation (3.5)) is skew-
symmetric.

Now, if n < m we can consider the(n− 1)-forms onU given by

α = dx1 ∧ . . . ∧ dxn−3 ∧ dxn ∧ dxn+1

β = xn−2dx1 ∧ . . . ∧ dxn−1

and a direct computation proves that 0= [[α, β]]U 6= −[[β, α]]U . This is a contradiction.
Hence,n = m. �

From theorem 3.9, we obtain:

Corollary 3.10. LetM be an oriented manifold of dimensionm, m > 3, andν be a volume
form onM. Then the Leibniz algebroid associated with the Nambu–Poisson manifold(M,3ν)

is a Lie algebroid.

4. Cohomology of a Leibniz algebroid and the modular class of a Nambu–Poisson
manifold

Let (E, [[ , ]] , %) be a Leibniz algebroid over a manifoldM. From definition 3.1, we deduce
thatC∞(M,R) is a0(E)-module with the multiplication

0(E)× C∞(M,R) −→ C∞(M,R) (s, f ) 7→ %(s)(f ). (4.1)

Thus, we can consider the differential complex(C∗(0(E);C∞(M,R)), ∂)and its cohomology
H ∗(0(E);C∞(M,R)), that is, the cohomology of0(E) with coefficients inC∞(M,R) (see
section 2.2).H ∗(0(E);C∞(M,R)) is calledthe Leibniz algebroid cohomology ofE. Using
(2.10), we have that

∂kck(s0, . . . , sk) =
k∑
i=0

(−1)i%(si)(c
k(s0, . . . , ŝi , . . . , sk))

+
∑

06i<j6k
(−1)i−1ck(s0, . . . , ŝi , . . . , sj−1, [[si, sj ]] , sj+1, . . . , sk) (4.2)

for ck ∈ Ck(0(E);C∞(M,R)) ands0, . . . , sk ∈ 0(E).
Remark 4.1. (a) Let (E, [[ , ]] , %) be a Lie algebroid overM and ck ∈ Ck(0(E);

C∞(M,R)). If ck is skew-symmetric andC∞(M,R)-linear then∂kck is also skew-
symmetric andC∞(M,R)-linear.
TheLie algebroid cohomologyofE is the cohomology of the subcomplex of the cochains
which are skew-symmetric andC∞(M,R)-linear (see [21]).
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(b) If (E, [[ , ]] , %) is a Leibniz algebroid overM andck ∈ Ck(0(E);C∞(M,R)) is skew-
symmetric (respectively,C∞(M,R)-linear) then, in general,∂kck is not skew-symmetric
(respectively,C∞(M,R)-linear).

The following result relates the Leibniz algebroid cohomology ofE with the Leibniz
cohomology of the base manifoldM.

Proposition 4.2. Let (E, [[ , ]] , %) be a Leibniz algebroid over a manifoldM. Suppose that
(C∗Leib(M), d) is the Leibniz cohomology complex of the manifoldM and denote by

%̃k : CkLeib(M) −→ Ck(0(E);C∞(M,R))
the homomorphism defined by

%̃k(ck)(s1, . . . , sk) = ck(%(s1), . . . , %(sk))
for ck ∈ CkLeib(M) ands1, . . . , sk ∈ 0(E). Then, the mappings̃%k induce a homomorphism of
complexes

%̃ : (C∗Leib(M), d) −→ (C∗(0(E);C∞(M,R)), ∂).
Therefore, we have the corresponding homomorphism in cohomology

%̃ : H ∗Leib(M) −→ H ∗(0(E);C∞(M,R)).

Proof. It follows using (2.11), (4.2) and definition 3.1. �

Remark 4.3. In fact, if (E, [[ , ]] , %) is a Lie algebroid overM, we can define a homomorphism
%̄ between the de Rham cohomology ofM, H ∗dR(M), and the Leibniz algebroid cohomology
of E given by

%̄ = %̃ ◦ i : H ∗dR(M) −→ H ∗Leib(M) −→ H ∗(0(E);C∞(M,R))
wherei : H ∗dR(M) −→ H ∗Leib(M) is the homomorphism induced by the natural inclusion.

Using proposition 4.2, we have

Corollary 4.4. Let (M,3) be a Nambu–Poisson manifold of ordern, with n > 3, and let
(
∧n−1

(T ∗M), [[ , ]] , #) be the Leibniz algebroid associated withM. Suppose that

#̃k : CkLeib(M) −→ Ck(�n−1(M);C∞(M,R))
is the homomorphism defined by

#̃k(ck)(α1, . . . , αk) = ck(#α1, . . . ,#αk)

for ck ∈ CkLeib(M) and α1, . . . , αk ∈ �n−1(M). Then, the mappings̃#k induce a
homomorphism of complexes

#̃ : (C∗Leib(M), d) −→ (C∗(�n−1(M);C∞(M,R)), ∂).
Therefore, we have the corresponding homomorphism in cohomology

#̃ :H ∗Leib(M) −→ H ∗(�n−1(M);C∞(M,R)).
For the particular case of a Nambu–Poisson structure coming from a volume form, we

deduce the following result:
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Proposition 4.5. LetM be an oriented manifold of dimensionm, withm > 3, and letν be a
volume form onM. Then the Leibniz cohomology of the algebroid associated with(M,3ν) is
isomorphic to the Leibniz cohomology ofM.

Proof. Sinceν is a volume form, the homomorphism

# :�m−1(M) −→ X(M)

defined by (2.3) and (2.4), is an isomorphism.
Using this fact and corollary 4.4 the result follows. �

Remark 4.6. Note that the Leibniz algebroid(
∧n−1

(T ∗M), [[ , ]] , #) associated with(M,3ν)

is also a Lie algebroid (see corollary 3.10) and that the Lie algebroid cohomology of∧n−1
(T ∗M) is isomorphic to the de Rham cohomology ofM.

For a Nambu–Poisson manifold(M,3) of ordern, we denote by{ , }′ the Leibniz
bracket on

∧n−1
(C∞(M,R)) characterized by (2.12). Then, the real vector spaceC∞(M,R)

is a
∧n−1

(C∞(M,R))-module with the multiplication given by (2.13). Thus, we can
consider the corresponding differential complex(C∗(

∧n−1
(C∞(M,R));C∞(M,R)), ∂ ′) and

its cohomologyH ∗(
∧n−1

(C∞(M,R));C∞(M,R)).
In the next result, we obtain a relation between the Leibniz algebroid cohomology of∧n−1
(T ∗M) and the cohomologyH ∗(

∧n−1
(C∞(M,R));C∞(M,R)).

Proposition 4.7. Let (M,3) be a Nambu–Poisson manifold of ordern, with n > 3. Then the
mapping

8 :
∧n−1

(C∞(M,R)) −→ �n−1(M) f1 ∧ . . . ∧ fn−1 7→ df1 ∧ . . . ∧ dfn−1 (4.3)

induces a natural homomorphism of complexes

8̃ : (C∗(�n−1(M);C∞(M,R)), ∂) −→ (C∗(
∧n−1

(C∞(M,R));C∞(M,R)), ∂ ′)
and therefore we have the corresponding homomorphism in cohomology

8̃ : H ∗(�n−1(M);C∞(M,R)) −→ H ∗(
∧n−1

(C∞(M,R));C∞(M,R)).

Proof. Consider the mappings

8̃k : Ck(�n−1(M);C∞(M,R)) −→ Ck(
∧n−1

(C∞(M,R));C∞(M,R))
defined by

8̃k(ck)(F1, . . . , Fk) = ck(8(F1), . . . , 8(Fk)) (4.4)

for F1, . . . , Fk ∈
∧n−1

(C∞(M,R)).
From (2.12), (3.6) and (4.3), we obtain

8({Fi, Fj }′) = [[8(Fi),8(Fj )]] .

Using this fact, equations (2.5), (2.10), (2.13), (4.2) and (4.4), we obtain that the mappings8̃k

induce a homomorphism of complexes. �

Next, we will introduce the modular class of an oriented Nambu–Poisson manifold. For
this purpose, we prove the following result.
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Theorem 4.8.Let (M,3) be an orientedm-dimensional Nambu–Poisson manifold of order
n, with n > 3, andν be a volume form. Consider the mapping

Mν : C∞(M,R)× . . .(n−1 . . .× C∞(M,R) −→ C∞(M,R)

defined by

LXf1...fn−1
ν =Mν(f1, . . . , fn−1)ν (4.5)

for f1, . . . , fn−1 ∈ C∞(M,R). Then:

(a) Mν is a skew-symmetric(n− 1)-linear mapping and a derivation in each argument with
respect to the usual product of functions. Thus,Mν defines an(n− 1)-vector onM.

(b) The mapping

M3 : �n−1(M) −→ C∞(M,R) α 7→ i(α)Mν (4.6)

defines a1-cocycle in the Leibniz cohomology complex associated with the Leibniz
algebroid(

∧n−1
(T ∗M), [[ , ]] , #).

(c) The cohomology class[M3] ∈ H 1(�n−1(M);C∞(M,R)) does not depend on the chosen
volume form.

Proof.

(a) It follows using (2.1), (2.2), (2.5), (2.6) and (4.5).
(b) We will show that for allα ∈ �n−1(M) we have

L#αν = [i(α)Mν + (−1)n−1(i(dα)3)]ν. (4.7)

Indeed, suppose thatα = f df1 ∧ . . . ∧ dfn−1, with f, f1, . . . , fn−1 ∈ C∞(M,R).
A direct computation proves that

L#αν = df ∧ iXf1...fn−1
ν + fMν(f1, . . . , fn−1)ν

= df ∧ iXf1...fn−1
ν + (i(α)Mν)ν. (4.8)

Now, sinceiXf1...fn−1
(df ∧ ν) = 0, we deduce that

df ∧ iXf1...fn−1
ν = Xf1...fn−1(f )ν.

Adding this formula to (4.8) we obtain that (4.7) holds forα = f df1 ∧ . . . ∧ dfn−1.

However, this implies that (4.7) holds for allα ∈ �n−1(M).

Using (3.10), (4.7) and theorem 3.7, we have that

i([[α, β]])Mν = L#[[α,β]]ν + (−1)n(i(d[[α, β]])3)ν = #α(i(β)Mν)− #β(i(α)Mν).

This proves (b) (see (4.2)).
(c) Let ν ′ be another volume form onM. Then there existsf ∈ C∞(M,R), f 6= 0 at every

point, such thatν ′ = f ν. We can suppose, without the loss of generality, thatf > 0.
A direct computation, using (4.7), shows that for allα ∈ �n−1(M)

i(α)Mν ′ = i(α)Mν + #α(ln f )

which implies that (see (4.2))

Mν ′ =Mν + ∂(ln f ). �

Theorem 4.8 allows us to introduce the following definition.
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Definition 4.9. Let (M,3) be an oriented Nambu–Poisson manifold of ordern, with n > 3,
andM3 be the cocycle defined by (4.6). The cohomology class

[M3] ∈ H 1(�n−1(M);C∞(M,R))
is called the modular class of(M,3).

Remark 4.10. Definition 4.9 extends for Nambu–Poisson manifolds of order greater than two
the notion of modular class of a Poisson manifold introduced by Weinstein [29] (see also [4]).

For a Nambu–Poisson structure induced by a volume form, we deduce:

Proposition 4.11.LetM be an orientedm-dimensional manifold andν a volume form onM.
Then the modular class of(M,3ν) is null.

Proof. Using (2.6)–(2.8), we obtain that

LXf1...fn−1
ν = 0

for all f1, . . . , fn−1 ∈ C∞(M,R). This implies thatMν = 0 and therefore,M3ν = 0. �

Remark 4.12. Suppose thatN andL are oriented manifolds and letν be a volume form on
N . The Nambu–Poisson structure3ν on N induces a Nambu–Poisson structure3 on the
product manifoldM = N × L (see examples 2.1) and from proposition 4.11, it follows that
the modular class of(M,3) is null.

Using theorem 2.2 and remark 4.12, we have the following.

Corollary 4.13. LetM be an orientedm-dimensional Nambu–Poisson manifold of ordern,
with 3 6 n 6 m. If at a point x ∈ M we have3(x) 6= 0, then there exists an open
neighbourhoodU of x inM such that the modular class of(U,3U) is null. Here3U denotes
the Nambu–Poisson structure induced by3 onU.

The above results and the following example show that the vanishing of the modular class
of a Nambu–Poisson manifold is closely related with its regularity.

Example 4.14.Consider onR3 the 3-vector defined by

3 = x3 ∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3

where(x1, x2, x3) denote the usual coordinates onR3.
The 3-vector3 defines a Nambu–Poisson structure of order three onR3.
Let ν be the volume form given by

ν = dx1 ∧ dx2 ∧ dx3.

A direct computation proves that

Xx1x2 = x3 ∂

∂x3
Xx1x3 = −x3 ∂

∂x2
Xx2x3 = x3 ∂

∂x1

and

LX
x1x2ν = ν LX

x1x3ν = LXx2x3ν = 0.

Thus,Mν = ∂/∂x1 ∧ ∂/∂x2.

Now, if the modular class of(R3,3)were null then there existsf ∈ C∞(R3,R) such that

i(α)Mν = ∂f (α)
for all α ∈ �2(R3). Takingα = dx1 ∧ dx2, we would deduce that

1= Xx1x2(f ) = x3 ∂f

∂x3
.

However, this is not possible. Thus [M3] 6= 0.
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